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Abstract
Drug-Drug Interactions (DDIs) are interactions with adverse effects on the body, manifested when two or more
incompatible drugs are taken together. They can be caused by the chemical compositions of the drugs involved. We
introduce gated message passing neural network (GMPNN), a message passing neural network which learns chemical
substructures with different sizes and shapes from the molecular graph representations of drugs for DDI prediction
between a pair of drugs. In GMPNN, edges are considered as gates which control the flow of message passing, and
therefore delimiting the substructures in a learnable way. The final DDI prediction between a drug pair is based on
the interactions between pairs of their (learned) substructures, each pair weighted by a relevance score to the final
DDI prediction output. Our proposed method GMPNN-CS (i.e., GMPNN + prediction module) is evaluated on two
real-world datasets, with competitive results on one, and improved performance on the other compared with previous
methods. Source code is freely available at https://github.com/kanz76/GMPNN-CS.

Key words: Drug-Drug Interaction, Substructure extraction, Substructure interaction, Multi-type interactions, Gated
Message Passing Neural Network

1. Introduction
Drug-Drug Interactions (DDIs) refer to the phenomenon, with
adverse effects on an organism, triggered when two or more drugs
are taken together. The co-administration of more than one drug
can be justified by the fact that some diseases are just too complex
to be treated with a single drug [1], or that multiple diseases
warrant multiple medications [2]. DDIs are therefore the risks,
sometimes life-threatening [2], that come with the therapeutic
benefits sought in multiple medications. The assessment of these
risks have prompted many studies and research work aimed at
identifying whether two or more given drugs are safe to be taken
together.

The identification of DDIs is usually performed in pharmaceutical
research/setting through extensive experimental testings (in vitro)
and clinical trials. However, the huge number of combinations of
drugs that should be considered for experimental testings makes
this process highly expensive and quasi-impossible, even with high-
throughput methods [3]. Computational methods (in silico) can thus
be used as a cheap, yet effective and fast alternative to alleviate

this problem by predicting potential DDIs based on the knowledge
distilled from already known DDIs.

In the last few years, there has been significant progress with
exciting results from the many learning based methods (i.e., both
machine and deep learning methods) proposed for the identification
of potential DDIs between combinations of two drugs, also known as
DDI prediction task. However, most of these methods are limited in
the way that they represent drugs as inputs, and perform the DDI
prediction task.

Based on the medicinal chemistry knowledge [4], which
states that a drug is simply an entity composed of different
functional groups/chemical substructures which determine all of
its pharmacokinetic (how it is handled by an organism) and
pharmacodynamic (how it affects an orgnanism) proprieties, and
ultimately all of its interactions, we propose a simple, yet
competitive computational method for DDI prediction (including
specifying the type of the interaction) between two drugs equipped
with this inductive bias. First, a drug is represented as a graph
based on its molecular graph representation. In order to extract the

© The Author 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
1

email:huiyu@nwpu.edu.cn
email:jianyushi@nwpu.edu.cn
https://github.com/kanz76/GMPNN-CS


2 Nyamabo et al.

substructures of a drug from its graph, we propose a message passing
neural network where edges have learnable weights, constrained
within the interval [0, 1]. These weights can be considered as gates to
delimit the substructures, with the effect of producing flexible-sized
and irregular-shaped substructures. Second, the DDI prediction
between two drugs is based on the interaction scores between their
learned substructures, each one weighted by a learnable weight using
a co-attention mechanism [5] (or interaction map). As a byproduct,
our method can give a hint at what substructures might be the cause
of a DDI occurrence. Third, we evaluate our model on two real-
word datasets: (1) Drugbank dataset which contains 1,704 drugs,
191,808 DDI pairs and 86 interaction types. (2) Twosides dataset
with 645 drugs, 4,649,441 DDI pairs, and 1,317 interaction types.
Experiments are conducted under two settings: transductive setting,
where the training and test sets of DDI pairs share the same drugs;
and inductive setting (also referred to as cold-start), where drugs
in the two sets have to be different. The latter is more challenging
than the former. Both datasets are used in the transductive setting
where our method showed competitive results on DrugBank dataset,
and outperformed previous methods on the Twosides dataset. In the
inductive scenario, only the DrugBank dataset is considered, and our
method shows better results.

2. Related Work
This section discusses previous works in DDI prediction task from
two perspectives: (1) How drugs are represented, and (2) how the
actual prediction is performed.

2.1. Drug Representation

The vast majority of existing DDI prediction methods represent
drugs using molecular fingerprints [6–8], and/or other drug profiles
such as side effects [6, 7], binding targets [8], transporters, enzymes,
pathways, or the combination of two or more of these features
[7, 9, 10]. Molecular fingerprints [11, 12] are binary vectors whose
elements indicate the presence (1) or absence (0) of a specific
chemical substructure. The other profiles are similarly represented
as binary vectors indicating the presence or absence of a particular
profile, say, a specific side effect or binding target. Some methods
[13–18] perform even further preprocessing by representing a drug
as a similarity vector which indicates how similar it is to other
drugs in the aforementioned representation spaces using similarity
measures such as cosine similarity, Jaccard similiarty. This is guided
by the assumption that similar/dissimilar drugs are likely to have
similar/dissimilar biological activities [17]. The downside with these
representations is that they are hand-crafted, limited to the current
state of human knowledge. There is not enough flexibility to discover
beyond what is encoded in them by a domain expert. For instance,
with fingerprint representation, there is no way to discover beyond
the chemical substructures that are already predefined, especially
when dealing with new drugs. Additionally, some features such
as side effects are not always available, especially in early drug
development, and therefore impeding the methods that rely on them
to be used.

In recent years, graph neural networks (GNNs) [19–22], deep
learning models designed for graph-structured data, have been
applied for learnable task-tailored representations of chemical
molecules in general, and drugs in particular, with improved
performance in molecule-related tasks [23–26]. However, this is
usually optimized to learn the representation of a drug as a whole
entity without giving too much consideration to the principal actors
of DDIs, that is the functional groups/chemical substructures that
constitute the drug molecule. Some of recent methods [27, 28] are

proposed with the consideration of substructures involvement in
DDIs. However, nodes’ hidden representations (also referred to as
patch representations) at each GNN layer are direclty treated as
substructure representations of the drugs. This approach produces
substructures of regular shapes whose diameters/sizes are defined
by the receptive field of the GNN layer. In this work, in order to
extract substructures from a molecular graph, we propose a method
that directly learns substructures of different sizes and shapes of the
molecule.

2.2. Drug-drug interaction prediction

Approaches for DDI prediction can roughly be classified into two
categories: one category where the drugs form a graph or network,
and the other where they are considered independent from one
another. In the latter, in order to perform the DDI prediction
between two drugs, their representations are aggregated (e.g.,
summation, concatenation) and then fed into a linear or non-
linear classifier for prediction [10, 13, 29–31]. In the network-based
category, drugs are assumed to form an interconnected system where
the drugs are the nodes, and the edges can either represent the
DDIs between the nodes [7, 14, 16, 17, 32, 33] or the similarities
between the drugs, based on their representations [6, 18]. Different
graph specific methods, including label propagation [6], matrix
factorization [7, 8, 16], graph auto-encoders [18, 33] are applied to
these derived networks to either conduct the prediction or firstly
learn low-dimensional representations of the drugs and then perform
the DDI prediction. The advantage of network-based methods is the
addition of the drug interconnected system’s topological information
to the drug representations which can boost the performance.
However, this approach does not work in inductive setting. In this
work, our method considers drugs as independent entities, and
therefore can be used both in inductive and transductive settings.
Furthermore, we leverage the co-attention mechanism (same as in
[27, 30]) between the learned substructures of a drug pair so that
each drug can communicate to the other which substructures are
really relevant. This has the effect that drugs are not completely
handled independently.

3. Method
In this section, we mathematically formulate the problem we are
trying to solve and present the building blocks of our method,
including the input format and all involved computational steps.
The overall framework is illustrated in Fig. 1.

3.1. Problem Formulation

Given a set of drugs D and a set of interaction types R, the DDI
prediction task can be regarded as a function f : D×R×D → [0, 1].
That is, given a triplet of two drugs and an interaction of a
certain type, the task predicts the probability that this type of
interaction will occur between the two drugs. The goal is to find
an approximation of f , given a dataset of known DDIs M ={
(dx, r, dy)i

}N

i=1
⊂ D × R × D. The proposed method in this

section is one such approximation.

3.2. Inputs

Drugs are represented as hydrogen-depleted undirected graphs G =

(V,E), where V is the set of nodes, representing atoms; E ⊂ V ×V

are the edges, representing the (covalent) bonds between the atoms.
Each node vi has a corresponding feature vector xi ∈ Rd. Similarly,
each edge eij = (vi, vj) has a feature vector xij ∈ Rd′

. The
features used for atoms and bonds are given in the Supplementary
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Fig. 1. Overview of our method workflow. Given a DDI tuple (dx, r, dy), dx and dy are represented in their molecular graph representation Gx and
Gy , respectively, and r is represented as the learnable matrix Mr ∈ Rb×b. After substructure extraction (Section 3.3), Gx produces |Vx| ({s(x)

i=1}
|Vx|
i )

substructures where each node is the center of a substructure. Gy undergoes the same process. A cross-substructure attention γij is computed between
these extracted substructures to learn how relevant they are to one another (Eq. 22). Each substructure undergoes a linear transformation, and the final
DDI prediction is the sum of interaction scores between every pair of drugs dx and dy ’s substructures, each one weighted by the co-attention weight γij

(Eq. 17).

material Section 1. Note that at this initial stage, because the graph
is undirected, the edges eij and eji are practically the same, and so
are xij and xji.

3.3. Substructure extraction with gated message passing neural
network

Given a general graph (i.e., not only a molecular graph), the
representation of a substructure centered1 at a node vi can be
regarded as the aggregation of all the nodes {vj | vj ∈ P→i}
on all the paths (starting at end nodes2) in the graph that end at
vi. P→i means a path to node vi. To refine the substructure even
further, edges on the graphs can be considered as gates, that is,
with weight values constrained within [0, 1]. These gates control the
flow of information along a path. A node vj along a path to vi is
therefore weighted by the product of the weight values of the edges
along the path that connect it to vi. We assume that if there are
many paths from vj to vi, which can happen if there is a cycle,
each path is considered separately. Weighing a node by the product
of edge values as proposed here has the end effect of producing
substructures of different sizes and shapes. If along the path, an
edge has weight value of ≈ 0, the nodes on the rest of the path are
cut off, therefore, delimiting the substructure in an irregular shape.
Each node in the graph can be treated as the center of a substructure
in order to extract as many as possible substructures from the graph.
However, this will require that each edge be transformed into a bi-
directional edge (each direction with its own weight) because a node
can be both a target node vi (i.e., center) and a source node vj .

1 The node vi is not literally at the center, it is simply the end
node of all the paths.
2 These can considered as peripheral nodes or nodes that are
as far away as possible from the node being considered as the
center.

See Fig. 2 for an illustrative example of the overall substructure
extraction process.

Applying this concept to a drug for chemical substructure
extraction, its molecular graphical representation G = (V,E),
which initially is undirected, is converted into a directed graph.
Edges eij and eji become two separate edges. To highlight this
difference, they are renamed ei→j (edge from node vi to node vj)
and ej→i, respectively. Each (directed) edge is assigned a learnable
weight constrained within the range 0-1.

The generation of all the paths in the graph can be
computationally inefficient, we therefore propose a message passing
neural network (MPNN) [21] named gated message passing neural
network (GMPNN) which can simulate this process. MPNN is a
framework of multi-layer spatial convolutional GNNs. Each layer
comprises three main components, namely, message passing (Eq. 1),
aggregation (Eq. 2), and update (Eq. 3):

m
(l)
j→i = M

(l)
(
h

(l−1)
j ,h

(l−1)
i ,qj→i

)
, ∀j : vj ∈ N (vi) (1)

a
(l)
i = A

(l)
(
{m(l)

j→i}j:vj∈N(vi)

)
(2)

h
(l)
i = U

(l)
(
h

(l−1)
i , a

(l)
i

)
(3)

At the lth iteration/layer (l = 1, . . . , L), in order to get the
updated feature vector h

(l)
i of vi, Eq. 1 flows information/message

from its adjacent nodes (N (vi)) vj ’s feature vectors h
(l−1)
j of the

previous iteration (l − 1). This information can be constrained by
or conditioned on node’s vi previous feature vector h

(l−1)
i , and

the features qj→i, if any, of the edge from vj and vi, with the
possibility of applying a non-linear transformation M(l). In Eq. 2,
all these messages are gathered using an aggregation function A(l)

(e.g., sum, max, mean) to finally produce a newly updated feature
vector h(l)

i of vi in Eq. 3. U(l) is an update function which can be as
simple as the sum of its arguments, or a complex non-linear function.
In short, at each iteration, a node is passed messages (features) from
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Fig. 2. Example of substructure extraction on (a) a toy graph, vi represents a node with associated feature vector hi. (b) Every edge is transformed
into a bi-directional one with weights wj→i within [0, 1] for each direction. (c) In order to extract the substructure centered at node v5 (in red), all the
paths (shown in green color) starting at end-nodes and ending at v5 are generated. (d) The substructure centered at v5 represented by vector s5 is the
aggregation of all the nodes along these paths, each node scaled by the product of the weights of the edges linking it to v5.

its adjacent nodes. This has the effect that at iteration l, a node
would be updated with the features of all the nodes that can be
reached within a walk of length l. This is close to our idea of node
aggregation along paths for substructure extraction. A walk in a
graph has a redundancy in the nodes visited (a node can appear
more than once in a walk, but at most once in a path), to get even
closer to the path generation process, we will base our work on a
MPNN variant, proposed in [26], named directed message passing
neural network (D-MPNN). Here, in order to reduce the redundancy
of nodes with standard MPNN, messages are passed between edges
instead of nodes. The three components of MPNN in D-MPNN
become:

m
(l)
k→j = M

(l)
(
hk,hj ,q

(l−1)
k→j

)
, ∀k : vk ∈ N (vj) \ {vi} (4)

a
(l)
i = A

(l)
(
{m(l)

k→j}k:vk∈N(vj)\{vi}

)
(5)

q
(l)
j→i = U

(l)
(
q
(l−1)
j→i , a

(l)
j→i

)
(6)

The difference between MPNN and D-MPNN is that the former
updates node features, while the latter updates edge features.
In order to update edge ej→i, Eq. 4 passes messages from its
neighboring edges ek→j , where the node vj is the common vertex.
Care is taken to remove the opposite direction to ej→i, that is, the
edge ei→j (hence, N (vj)\{vi} in Eq. 4), so that information flows
only in one direction, therefore reducing redundancy. After the final
iteration L of edge features updates, nodes are represented as the
aggregation of the features of all their incoming edges. For instance,
node vi’s final feature representation si can be:

si =
∑

j:vj∈N(vi)

q
(L)
j→i (7)

Next, we present the computational steps of our message passing
method GMPNN. Given a graph G = (V,E) representing a drug:

• A non-linear transformation is applied to the nodes for better
feature representation:

hi = MLPinit_n (xi) , ∀vi ∈ V (8)

whereMLPinit_n(·) is a multi-layer perceptron (MLP) for non-
linear transformation. hi ∈ Rf is the updated feature vector of
node vi after transforming its original feature vector xi.

• The edge features are also transformed as follows:

hj→i = MLPinit_e (xji) , ∀ej→i (9)

hi→j = MLPinit_e (xij) , ∀ei→j (10)

hj→i,hi→j ∈ Rm are new feature vectors of edges ej→i and
ei→j , respectively. Note that even though the edges ej→i and
ei→j are different, their features hj→i and hi→j are practically
the same because xji = xij (See Section 3.2).

• The weight (gate) wj→i ∈ [0, 1] of edge ej→i is initialized based
on its incident nodes’ features hj and hi, and its own features
hj→i:

oj→i =
1

c

(
h

T
j→i MLPw (hj ∥ hi)

)
wj→i = σ (oj→i) (11)

where σ(·) is the sigmoid function used to constrainwj→i within
[0, 1]; T is the transposition operation; ∥ is the concatenation
operation. c (> 0) is a constant used to avoid saturation with
gradient flow when using sigmoid function. We have set it to the
degree of node vj , the tail of the edge ej→i. Note that the edges
ej→i and ei→j have different weights (i.e., wj→i ̸= wi→j),
because ∥ is not commutative.

• Now that we have node feature vectors hi and edge weights
wj→i, we are ready to apply the directed message passing
mechanism for the simulation of aggregation of nodes along paths
for substructure extraction. Since message is passed between
edges instead of nodes, we propose to promote nodes’ features
to edge level. Edge ej→i’s new features become:

q
(0)
j→i = wj→ihj (12)

where q
(0)
j→i ∈ Rf . That is, ej→i takes on the features hj of its

tail node vj scaled by its weight wj→i. Note that ej→i previous
features hj→i (Eq. 9) is different from q

(0)
j→i. The former was
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simply used to compute the weight wj→i (Eq. 11), whereas the
latter (containing node information) will be used in the actual
message passing for node aggregation along paths as intended.

• The message passing, aggregation, and update components of
our proposed method are therefore defined as:

m
(l)
k→j = wj→iq

(l−1)
k→j , ∀k : vk ∈ N (vj) \ {vi} (13)

a
(l)
j→i =

∑
k:vk∈N(vj)\{vi}

m
(l)
k→j (14)

q
(l)
j→i = q

(0)
j→i + a

(l)
j→i (15)

Contrary to Eq. 4, Eq. 13 does not apply any transformations
to feature vectors at each iteration l during message passing
because we want to keep all the nodes that compose a
substructure in the same feature space. However, at each
iteration, features are scaled by the weight of the edge, this
has the end effect of multiplying node features by the product
of the weights of the edges linking it to the center node of the
substructure. As an aside, this paradigm of not applying any
transformations during message passing can also be regarded as
an instance of the concept of simplifying graph convolutions [34].

• The final representation of a node vi, after the last iteration L,
which captures the substructure information of which it is the
center is given by:

si = fsub

hi +
∑

j:vj∈N(vi)

q
(L)
j→i

 (16)

where N (vi) is the set of nodes adjacent to vi, and fsub(·) is a
non-linear function implemented as an MLP. To obtain si ∈ Rb,
we simply aggregate all the features q(L)

j→i from all of its incoming
edges ej→i, ∀j : vj ∈ N (vi). si is the vector representation of
the learned/extracted substructure centered at vi. Note that
initially, the feature vector of node vi (i.e., hi) contained only
the information of a single atom, but now si contains the features
representing a substructure centered at that atom.

The application of our proposed method for substructure
extraction in inductive setting is made possible by the fact that
the values of edge weights (Eq. 11) depend only on node (atom) and
edge (bond) features. If we encounter a new drug, the substructure
extraction operation can still be performed because all the molecules
share the same type of atoms and bonds.

3.4. Drug-drug interaction prediction

Given a DDI tuple (dx, r, dy), the DDI prediction is determined as
the join probability of the tuple:

P (dx, r, dy) = σ

|Vx|∑
i

|Vy|∑
j

γij ŝ
(x)T
i Mr ŝ

(y)
j

 (17)

• σ(·) is the sigmoid function.
• ŝ

(x)
i and ŝ

(y)
j are linear transformations of the substructure s

(x)
i

and s
(y)
j , respectively.

ŝ
(x)
i = W(x)s

(x)
i , i = 1, . . . , |Vx| (18)

ŝ
(y)
j = W(y)s

(y)
j , j = 1, . . . , |Vy| (19)

where W(x), and W(y) ∈ Rb×b are learnable transformation
matrices.

• Mr ∈ Rb×b is the learnable representation matrix of the
interaction type of r. To reduce the number of parameters, we
constrain it to be a diagonal matrix.

Mr = diag(mr) (20)

diag(·) generates a diagonal matrix where · is the diagonal, and
mr ∈ Rb is a learnable vector specific to the type of interaction
r.
Because the Twosides dataset defines multiple existing
interactions between two given drugs (See Section 4.1 for more
details), we redefine Mr as follows for this dataset:

Mr = diag(fpred(mr)) (21)

where fpred is a non-linear function implemented as an MLP to
encourage similar or commonly co-occuring interaction types to
have similar represenatitons.

• γij ∈ [0, 1] is the cross-substructure interaction weight, also
known as co-attention, between substructures (Eq. 16) s

(x)
i of

drug dx and s
(y)
j of dy .

γij = softmax
(
MLPγ(s

(x)
i ∥ s

(y)
j )

)
, i = 1, . . . , |Vx| (22)

j = 1, . . . , |Vy|

Here again to account for the multiplicity of interactions between
two drugs in the Twosides dataset, for this dataset we propose :

γij = softmax
(
MLPγ

(
s
(x)
i ∥ s

(y)
j ∥ fr(mr)

))
(23)

where fr is an MLP and mr is the same as in Eq. 21. The goal is
to have a co-attention score aware of the interaction type which
is being considered.

The DDI prediction can therefore be considered as a binary
prediction of a DDI tuple. Since only known DDIs are given in the
datasetM (See Section 3.1), they are considered as positive samples,
negative samples are generated by corrupting either dx or dy . That
is, given a known DDI tuple (dx, r, dy), its derived negative sample
is generated by either replacing dx or dy . We follow the strategy
proposed in [35] for negative sample generation. The learning process
of the whole model is done by minimizing the binary cross-entropy
loss function given as:

L = −
1

|M|
∑

i:(dx,r,dy)i∈M

(
log(pi) + log(1− p

′
i)
)

(24)

|M| is the number of DDI tuples in the dataset, pi is the probability
(Eq. 17) of a known DDI tuple, and p′

i is the probability of its
associated negative sample.

4. Experiments
4.1. Datasets

Two real-world datasets, downloaded using the tdc python library3

[36], were used for the evaluation of our method.

• DrugBank: sourced from FDA/Health Canada drug labels,
it contains 191,808 DDI tuples with 1,706 drugs. Each drug
is represented in SMILES from which molecular graphical

3 https://tdcommons.ai/

https://tdcommons.ai/
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representations are generated using the python library RDKit4.
There are 86 interaction types describing how one drug
affects the metabolism of another one. For example, the
excretion of Acamprosate can be decreased when combined with
Acetylsalicylic acid (Aspirin). Each DDI pair is considered as
a positive sample from which a negative sample was generated
as mentioned in Section 3.4. In this dataset, there is only one
interaction for each DDI tuple, that is, there are no two distinct
tuples with the same drug pair but different interactions.

• Twosides: proposed by [37] after filtering the original
TWOSIDES side effets data [2]. It contains 4,649,441 DDI
triplets with 645 drugs, and 1,317 interaction types. As opposed
to the DrugBank dataset, these interactions are rather at the
phenotypic level than metabolic. That is, here, interactions
are simply side effects, such as headache, pain in throat.
Furthermore, given two drugs, there can exist many such
interactions between them, contrary to DDI tuples in DrugBank.
As in [37], this dataset is further preprocessed by removing
interaction types that occur in less than 500 DDI tuples in order
to work only with commonly occurring types, thus, remaining
with 963 interactions types, and 4,576,287 DDI tuples.

The distributions of the DDI types in both datasets are given in the
Supplementary materials Section 4.

4.2. Setup

Our model, named GMPNN-CS, was implemented in Pytorch5 [38]
and Pytorch Geometric6 [39]. We used random search for hyper-
parameters fine-tuning and decided on the best values based on the
overall performance on validation set. We considered the following
hyper-parameter settings. The number of message passing iterations
L was searched from {3, 5, 7, 10, 15}, dimensions of hi (Eq. 8) and
si (Eq. 16) were searched from {64, 128}. The model was trained
on mini-batches of 512 DDI tuples using the Adam optimizer [40]
with a learning lr rate tuned from {1e-2, 1e-3, 1e-4}. Additionally,
an exponentially decaying scheduler of 0.96t (where t is the current
epoch) was set on the learning rate. We found that the combination
of L = 10, hi ∈ R64, si ∈ R128, and lr = 1e-3 produced
the best performance. The implementation details of MLPinit−n,
MLPinit_e, MLPw, fsub, MLPγ , fr , and fpred are given in the
Supplementary materials Section 2.

4.2.1. Baselines
We compared our model with state-of-the-art methods, which
similarly (1) work with molecular graphs as inputs; (2) integrate
joint drug-drug information in some way during the learning process;
(3) consider the involvement of substructures in DDI interaction
prediction; and/or (4) work both in transductive and inductive
settings.

• MR-GNN [28]: uses the representation at each graph
convolution layer of nodes to capture substructures of different
size for each drug. These representations are jointly fed into a
recurrent neural network for a joint representation of a pair of
drugs for DDI prediction.

• MHCADDI [30]: uses co-attention mechanism to integrate
joint drug-drug information during the representation learning
of individual drugs.

4 https://www.rdkit.org/
5 https://pytorch.org/
6 https://pytorch-geometric.readthedocs.io/

• SSI-DDI [27]: considers each node hidden features as
substructures and then computes interactions between these
substructures to determine the final DDI prediction.

• GAT-DDI: baseline we implemented using graph attention
networks (GAT) [19] for drug representations which are directly
used for DDI prediction.

• GMPNN-U: variant of our proposed method GMPNN-CS
where the co-attention coefficient γij(Eq. 22) is simply uniform,
that is, γij = (|Vx||Vy|)−1.

We (re-)implemented these methods in Pytorch, some with little
modifications from the original work for fair comparison and better
performance. See Supplementary material Section 3 for details.

4.3. Results

Experimental results are presented in following metrics: the accuracy
(ACC), the area under the receiver operating characteristic (AUC),
the average precision (AP), the F1 score, the precision (P), and the
recall (R).

4.3.1. Transductive setting
In transductive setting, the drugs used during training can also
appear in the test set. In this setting, we split the datasets
randomly based on DDI tuples. We performed a stratified split
on both datasets based on the interaction types in order to keep
the same proportions of interaction types in the training (60%
of the data), validation (20%), and test (20%) sets. We did this
three times, resulting in three stratified randomized folds. For
each DDI tuple, a negative sample is generated as discussed in
Section 3.4. They were generated before training to ensure that all
the methods are trained on the same data. Each model, including
our proposed method and all the baseline models, were trained and
tested on each one of these three stratified folds. The means and
standard deviations of the results of each model from these three
experiments are reported in Table 1. Improvement in performance
in each metric score (without considering standard deviations) of
our method GMPNN-CS with respect to the highest score of the
baseline methods is shown in the bottom row of the table. On the
DrugBank dataset, our method did not perform the best as we can
see a decrease in scores. We can also see that the results of GMPNN-
CS and its variant GMPNN-U are very close, giving the impression
that co-attention did not work. An explanation for this behavior
is given in Section 5. However, on the Twosides dataset there is
an improvement with a significant margin over the other methods.
Here, there is a big difference between GMPNN-U and GMPNN-CS
because this is a dataset with multiple interactions between a pair
of drugs. Due to computational limitation, we could not perform
experiments with MHCADDI on this dataset, we only report the
results (only AUC available) from the original paper. GAT-DDI does
not seem to work well on this dataset, behaving just like a random
classifier with scores of about 50%. This can be due to gradient
vanishing/exploding or oversmoothing problem. It is not considered
in the improvement computation (last row of Table 1) on this
dataset. Furthermore, GMPNN-U is similar to GAT-DDI, except
for the message passing component. The former uses our proposed
GMPNN, whereas the latter uses GAT. Experimental results show
that our message passing method performs better than GAT on
both datasets. Furthermore, performance on each DDI type on both
datasets is presented the Supplementary materials Section 5.

4.3.2. Inductive setting
Contrary to transductive setting, here the dataset is split based
on the drugs. That is, the DDI tuples in training and test

https://www.rdkit.org/
https://pytorch.org/
https://pytorch-geometric.readthedocs.io/
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Table 1. Comparative evaluation (mean ± std) in % in transductive setting. Best performance in each metric is shown in bold font. The
last row shows the improvement in performance on the DDI prediction task in each metric by our method. It is the difference between our
method’s performance and the best performance among baseline methods. Negative values, therefore, mean our method did not perform the
best, and positive ones indicate it performed the best. *GAT-DDI was not considered in the computation.

DrugBank Twosides
ACC AUC AP P R ACC AUC AP P R

MR-GNN 96.04±0.05 98.87±0.04 98.57±0.06 94.48±0.08 97.78±0.03 76.23±0.23 85.00±0.22 84.32±0.35 72.82±0.44 83.70±0.39
MHCADDI 83.80±0.27 91.16±0.31 89.26±0.37 78.90±0.06 92.26±0.63 – 88.20 – – –
SSI-DDI 96.33±0.09 98.95±0.08 98.57±0.14 95.09±0.08 97.70±0.14 78.20±0.14 85.85±0.13 82.71±0.14 74.33±0.21 86.15±0.15
GAT-DDI 89.81±1.00 95.21±0.70 93.56±0.90 87.04±1.11 93.56±0.52 50.00 50.00 50.00 50.00 100
GMPNN-U 95.00±0.10 98.32±0.04 97.77±0.06 93.19±0.15 97.07±0.06 74.78±0.04 82.08±0.02 78.67±0.03 71.77±0.09 81.69±0.33
GMPNN-CS(Ours) 95.30±0.05 98.46±0.01 97.94±0.02 93.60±0.07 97.22±0.1 82.83±0.14 90.07±0.12 87.24±0.12 78.42±0.11 90.61±0.23
Improvement -1.03 -0.49 -0.63 -1.49 -0.56 +4.63 +1.87 +2.92 +4.09 +4.46*

Table 2. Comparative evaluation (mean ± std) in % in inductive
setting. Best performance in each metric is shown in bold font.

ACC AUC AP F1
MS1 Partition (new drug ↔ new drug)

MR-GNN 62.63±0.77 70.92±0.84 73.01±1.23 45.81±2.51
MHCADDI 66.50±0.62 72.53±0.92 71.06±1.61 67.21±0.59
SSI-DDI 65.40±1.30 73.43±1.81 75.03±1.42 54.12±3.46
GAT-DDI 66.31±0.61 72.75±0.78 71.61±1.00 68.68±0.60
GMPNN-U 67.90±0.50 73.76±0.90 74.58±1.06 63.73±0.80
GMPNN-CS(Ours) 68.57±0.30 74.96±0.40 75.44±0.50 65.32±0.23

MS2 Partition (new drug ↔ old drug)
MR-GNN 74.67±0.33 83.15±0.60 83.81±0.69 69.88±0.86
MHCADDI 70.58±0.94 77.84±1.08 76.16±1.45 72.74±0.65
SSI-DDI 76.38±0.92 84.23±1.05 84.94±0.76 73.54±1.50
GAT-DDI 69.83±1.41 77.29±1.63 75.79±1.95 73.01±0.85
GMPNN-U 77.00±0.60 83.92±0.50 84.14±0.74 77.29±0.50
GMPNN-CS(Ours) 77.72±0.30 84.84±0.15 84.87±0.40 78.29±0.16

sets do not have overlapping drugs. This approximates a real-
world scenario where there is a new drug for which there is no
known prior associated drug interactions. It is also referred to as
cold-start scenario in the literature. It is more challenging than
the transductive setting. In the latter, the model only learns
to generalize to unseen DDI tuples (with all the drugs already
known during training), while here, the model has to further learn
to generalize to unseen drugs (possibly with out-of distribution
chemical structures). In this setting, we randomly reserve 1

5 of
the drugs as new drugs (Dnew), not used during training. DDI
tuples whose both drugs are in Dnew are collected in Ms1, those
with neither drugs in Dnew are collected in Mtrain, and the
remaining tuples, those with one drug in Dnew and the other not
in, are collected inMs2. This process is also repeated three times,
resulting in three randomized folds. Negative samples are generated
respecting the constraints of this setting. That is, negative samples
forMtrain do not contain drugs appearing in Dnew, those forMs1

have both drugs in Dnew, and those forMs2 have one and only one
drug in Dnew.
Only DrugBank dataset is used for experiments in this setting
because it contains a relatively large number of drugs. We added
some regularization in terms of dropout layers [41] to our model
so that it does not overfit to old drugs (Dold = D \ Dnew). To
be fair, we also modified the baseline methods by adding dropout
layers. Means and standard deviations of the results of experiments
on the three randomized folds are shown in Table 2, we can see
that our method performed the best overall. Nevertheless, we can
observe a significant drop in performance from transductive setting
for all the methods. This is because DrugBank is made of drugs
that are significantly different as far as their scaffolds (core chemical
structure) are concerned [27]. Thus, not only drugs in Dnew and
Dold are different, but also share very little structurally.

4.4. Visual Inspection

Here are some visual examples of DDI prediction on DrugBank,
which can give hints at what might be the cause of a DDI.
First, pairs of substructures with top values of γij (Eq. 22) are
retrieved. Second, the weights of the edges of a substructure in
the rendered figures are redefined as follows: for instance, if v1 is
the center of the substructure, and v1

w2,1←−−− v2

w3,2←−−− v3

w4,3←−−− v4

is one of the paths constituting the substructure, where wj,i(=
wj→i (Eq. 11)) is the learned weight of edge ej→i, in the
visual examples (Fig. 3-4), edges have values of the products
of all the edge values before them in the path and their
own values, that is, v1

w2,1←−−− v2

w2,1w3,2←−−−−− v3

w2,1w3,2w4,3←−−−−−−−− v4.
If w2,1 = 0.9, w3,2 = 0.7, and w4,3 = 0.6, then
we have v1

0.9←−− v2
0.63=0.9×0.7←−−−−−−−−− v3

0.378=0.9×0.7×0.6←−−−−−−−−−−−−− v4. For
simplicity, if an edge has more than one neighboring edges (i.e.,
appears in more than one path), we take the maximum value.
Third, these values are shown on corresponding edges and used as
intensities to highlight (in green) edges in the figures, and the center
nodes of substructures are highlighted with gray-filled circles. Fig. 3
shows the drug sildenafil, a phosphodies-terase-5 (PDE5) inhibitor
used for erectile dysfunction, and amyl nitrite, a nitrate drug. It
is contraindicated to take a PDE5 inhibitor with a nitrate drug
simultaneously because it can cause a reduction in the blood pressure
[29, 42]. We can see that nitrate group (in the dashed red box) of
Amyl nitrite is very much involved in the DDI prediction outcome.
Fig. 4 is the example of ofloxacin (a fluoroquinolone) and calcium
carbonate (an antacid). The carbonyl oxygen and the carboxylic acid
of ofloxacin (both shown within red dashed boxes) can form a chelate
with a metal ion (in this case the calcium of the calcium carbonate).
Chelates have very poor water solubility and can therefore cause a
significant reduction in the absorption of ofloxacin in the body [4].

5. Discussion and Limitations
Every node/atom is considered the center of a substructure, and
therefore there are as many substructures as there are nodes. Nodes
that are adjacent to each other end up being centers to substructures
that are similar, causing redundancy. This has the negative effect
that γij (Eq. 22) is overused by only a group of very similar
substructures, with the tendency of the former to be uniform within
groups of (adjacent) substructures. This can explain why, especially
in the case of Drugbank, there is no much difference between
GMPNN-U and GMPNN-CS (See Section 4.3.1). As future work,
we think that, to solve this issue, a clustering or pooling algorithm
might be used to pool similar substructures together and retain only
one representative substructure.

The importance of edge weights as gates for substructure
extraction only becomes apparent when we increase the number of
iterations L. Fig. 5 shows the comparison between GMPNN-CS and
a variant (NoGMPNN-CS) where we remove the weights altogether
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p = 0.82

Amyl nitrite Sildenafil

Fig. 3. Visual inspection of DDI prediction between amyl nitrite and sildenafil. p = 0.82 is the prediction output. Atoms with gray-filled circles
backgrounds are centers of substructures of interest.

p = 0.99

Calcium carbonate Ofloxacin

Fig. 4. Visual inspection of DDI prediction between calcium carbonate and ofloxacin.

(or equivalently, the weights are all set to 1). We can see that with
5-10 iterations of message passing the difference is quite small, but
becomes significant as the number of iterations increases. As an
aside, these results also demonstrate the ability of our proposed
method to be extended into deeper GNNs without degradation in
performance. Additionally, drugs are mainly organic molecules with
the majority of atoms being carbon, producing graphs where the
majority of nodes are alike. This can affect the computation of edge
weights (Eq. 11). For future work, we think additional information
such as spatial location of atoms might be useful to make the
difference more prominent.

The poor performance of our method on the DrugBank dataset
(Table 1) can be linked to the imbalance state of this dataset
as shown in the Supplementary materials Section 4 (Fig.2). Our
method has difficulty generalizing on DDI types with very low
frequency. As future work, we aim to investigate this issue further
in order to come up with an effective approach for handling DDI
types with very low frequencies.

6. Conclusion
We proposed GMPNN-CS, a computational method for drug-drug
interaction (DDI) prediction. GMPNN-CS learns substructures of
different sizes and shapes of drugs in order to infer whether a pair
of drugs can cause a DDI based on their chemical substructures.
We demonstrated empirically the effectiveness of GMPNN-CS using
two real-world datasets, with significant performance improvement
in one of them. Experiments are conducted in both transductive
and inductive settings. A visual inspection (as conducted in the
experiments) of substructure extraction and their involvement in a

(a) (b)

(c) (d)
Fig. 5. Comparison of performance between our method GMPNN-CS, and
its variant without edge gate values, NoGMPNN-CS, or equivalently with
constant gate values all set to 1. Contrary to NoGMPNN-CS, GMPNN-CS
can be extended to many iterations (layers) with constant performance.

DDI prediction can be used as hint by both expert and non-expert
users to interpret the results of a prediction.
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9. Key points
• Using chemical substructures of drugs to predict drug-drug

interaction between a pair of drugs by also giving the specific
type of the interaction (multi-type prediction).

• Proposing a message passing neural network named gated
message passing neural network (GMPNN) for learning
substructures of various (or adaptive) sizes and shapes from
molecular graphs of drugs.

• Using co-attention mechanism to learn the relevance of each
pairwise substructure interaction involvement in a drug-drug
interaction.

• Proposed method able to be applied both in transductive and
inductive (or cold-start) settings.
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