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Abstract
Classical approaches for flood prediction apply numerical methods for the solution of partial differential equations
that capture the physics of inundation processes (e.g. the 2D Shallow Water equations). However, traditional
inundation models are still unable to satisfy the requirements of many relevant applications, including early-warning
systems, high-resolution (or large spatial domain) simulations, and robust inference over distributions of inputs
(e.g. rainfall events). Machine learning (ML) approaches are a promising alternative to physics-based models due
to their ability to efficiently capture correlations between relevant inputs and outputs in a data-driven fashion. In
particular, once trained, ML models can be tested/deployed much more efficiently than classical approaches. Yet,
few ML-based solutions for spatio-temporal flood prediction have been developed and their reliability/accuracy
is poorly understood. In this paper, we propose FloodGNN-GRU, a spatio-temporal flood prediction model that
combines a graph neural network (GNN) and a Gated Recurrent Unit (GRU) architecture. Compared to existing
approaches, FloodGNN-GRU (i) employs a graph-based model (GNN); (ii) operates on both spatial and temporal
dimensions; and (iii) processes the water flow velocities as vector features, instead of scalar features. We evaluate
FloodGNN-GRU using a LISFLOOD-FP simulation of Hurricane Harvey (2017) in Houston, Texas. Our results,
based on several metrics, show that FloodGNN-GRU outperforms several data-driven alternatives in terms of
accuracy. Moreover, our approach can be trained 100x faster and tested 1000x faster than the time required to
run a comparable simulation. These findings illustrate the potential of ML-based methods to efficiently emulate
physics-based inundation models, especially for short-term predictions.

Impact Statement

A spatio-temporal model for flood prediction combining a graph neural network and a gated recursive
unit can generate accurate short-term predictions for a simulation of Hurricane Harvey in Houston, TX,
while requiring significantly less computation time.

1. Introduction

Flooding is the most devastating type of natural disaster both socially and economically [1]. Climate
change is driving changes in the intensity, frequency, and spatiotemporal structure of heavy precipitation,
which is anticipated to increase urban flood hazard in many regions [2, 3]. Predictive modeling can
support adaptation in many ways, such as through early warning systems or by mapping hazards across
space and time [1].

The theoretical framework for flood modeling is based on fluid mechanics, such as the 3D Navier
Stokes equations. Due to numerical constraints, insufficient knowledge of boundary conditions, and
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limited computational resources, most state-of-the-art models leverage sophisticated numerical methods
to apply 1D and 2D equations to model flood propagation. Despite these simplifications, computational
cost remains a critical bottleneck. For example, LISFLOOD-FP [4]—a popular open-source flood
simulation package—takes approximately 6 hours to simulate Hurricane Harvey with a 1-hour time
resolution and 30 meters spatial resolution over one week for the Harris County region (approximately
5,000 km2) in Texas using a desktop computer, even though LISFLOOD-FP uses a simplified physical
scheme. This high computational cost limits our ability to run large flood ensembles (e.g., to evaluate
different mitigation strategies over large samples of rainfall events), to deploy early warning systems, or
to increase the spatio-temporal resolution and domain of simulations.

Recently, machine learning (ML) has been presented as an alternative to physics-based inundation
models [5]. For instance, ML has been applied for real-time flood forecasting [6], continental-scale flood
risk assessment [7, 8], high-resolution flood extent prediction [9], and resource-constrained prediction
[10]. Many of these approaches apply deep learning due to its expressive power [11] and scalability.
However, these models either focus on the spatial or the temporal dimension [2, 12, 13, 14, 15, 16,
17, 18, 19], which limits out-of-sample predictive skill. More specifically, spatial models, which are
based on Convolutional Neural Networks (CNNs) or feed-forward neural networks, predict only the
maximum water depth at each location (a.k.a., an inundation map). On the other hand, temporal models
apply Recurrent Neural Networks (RNNs) to capture the evolution of water depths over time without
accounting for the spatial structure [20, 21, 22, 23, 24]. These restrictions limit the applicability of ML-
based flood prediction approaches compared to more traditional physics-based solutions. For instance,
while capturing the dynamics of the flooding event is necessary to recommend evacuation routes, spatial
information enables the prediction of physically consistent water depths based on conservation laws.
ML models are often trained with either (sparse) gauge observations or with (dense) outputs of physics-
based flood simulators. Their major advantage is fast test/deployment time compared to state-of-the-art
physics-based simulators. On the other hand, different from physics-based models, fully data-driven
approaches do not encode fluid mechanics equations, thus only being able to learn the physics of
flooding directly from data.

This work investigates data-driven spatiotemporal models for flood prediction. We focus on graph-
based models (allowing irregular mesh), where the raster map of a region is represented as nodes/cells as
locations and edges as spatial proximity. Graph Neural Networks, which can be viewed as a generalization
of CNNs, have achieved promising results in predicting physics simulations [25]. Graphs are more flexi-
ble than image-based representations, as they support irregularly-sampled cells and rotation-invariance,
while still being able to capture relations between nearby locations. We leverage these advantages by
proposing FloodGNN-GRU, a Graph Neural Network architecture for flood prediction. At each time
step, FloodGNN-GRU predicts the water depths and velocities—i.e. the state of the flood—based on
previous depths and velocities as well as static features (e.g., elevation). Velocities are processed as vec-
tor features using geometric vector perceptrons [26]. We validate our model in terms of accuracy and
computation time using a LISFLOOD-FP simulation of Hurricane Harvey, in Houston, TX. Our exper-
iments illustrate the potential of FloodGNN-GRU to be a faster alternative to traditional physics-based
flooding simulation schemes. The main contributions of our work can be summarized as follows:

• We propose FloodGNN-GRU, a graph neural network designed for flood prediction;
• We propose the use of geometric vector perceptrons to represent velocity information in

FloodGNN-GRU and show its improvement in performance;
• We evaluate FloodGNN-GRU using a representative dataset that simulates Hurricane Harvey in

Houston, TX using LISFLOOD-FP. Our experiments show that our approach outperforms the best
baseline by 17% in terms of RMSE and 31% in terms of Pearson’s coefficient of correlation. Moreover,
once trained, FloodGNN-GRU is faster than LISFLOOD-FP at testing/deployment (1000x faster).
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2. Related Work

There is a vast literature on traditional inundation modeling [1, 27]. The most physically accurate
mathematical inundation model is the 3-D Navier Stokes equation at the resolution of millimeters.
Multiple limitations make such a model impractical, including computation and unavailability of high-
resolution data. Instead, existing flood simulation models apply more tractable alternatives, such as
a combination of 1-D and 2-D Saint-Venant (or shallow water) equations at the resolution of meters
[28, 29]—with some variation depending on whether the covered area is urban or rural. These simplified
models are implemented using sophisticated high-performance schemes to enable efficient computation
using large-scale distributed systems and specialized hardware. Recent advances towards each of these
directions have enabled the application of inundation models at continental and global scales [7, 8, 1]
However, this is still an area of active research towards the development of higher (spatial and temporal)
resolution, larger scale, and more accessible inundation prediction.

Recently, machine learning, and especially deep learning, has gained popularity as an alternative
to traditional inundation models. For instance, in [10], the authors describe an operational data-driven
system that integrates a long short-term memory (LSTM) architecture, thresholding, and a manifold
model for flood forecasting. Kao et al [30] address the same problem using a combination of an
LSTM and an autoencoder. A feed-forward neural network for high-resolution flood forecasting (4
meters) is introduced in [31]. Random forests have been applied to predict flood hazards at the scale
of the continental United States in [7] and [8]. The problem of maximum inundation prediction has
been addressed using an ensemble of neural networks [2], CNNs [19, 18], and a U-Net [32]. In [17],
inundation maps are generated using an adversarial network conditioned on the rainfall distribution.
Mosavi et al. [5] provides a comprehensive review of machine learning approaches for flood prediction.
Bentivoglio et al. [33] reviews machine learning applications for flood mapping (e.g. inundation maps,
inundation hazard maps). Similar to [31], our paper is focused on predicting water depths (and velocities)
at multiple steps using machine learning. However, we investigate the use of graph neural networks with
geometric feature representations as a more effective architecture for flood prediction.

One of the key challenges in applying data-driven models to scientific computing applications is the
lack of physical knowledge encoded in the model. As a consequence, a machine learning model can
generate predictions that violate well-known physical laws (e.g. conservation of mass). To address this
challenge, recent papers have proposed incorporating physics into deep learning models via physics-
inspired neural networks (PINNs) [34, 35]. The idea is to add a differential equation capturing the
physics of the system to the loss function of the machine learning model. As a consequence, predictions
that violate the known physical relationships between the variables are penalized.

As flooding is a spatio-temporal process, reproducing the physics of flooding requires a spatial
model. Here, we apply Graph Neural Networks (GNNs) to capture spatial information. GNNs enable the
application of deep learning to irregular graph data. [36, 37, 38, 39, 40, 41]. GNNs have been successfully
applied to several problems including node classification, link prediction and graph classification. The
inference is often performed via message-passing among vertices in the graph [41], which can be
performed efficiently via sampling [40]. More recently, there has been a growing interest in applying
GNNs for physics-based simulations [42, 43, 44, 45, 46, 47]. For instance, in [48] the authors propose a
GNN that can simulate dynamics of fluids, rigid solids, and deformable materials via message-passing.
A mesh-based GNN for physical simulations with adaptive re-meshing is introduced in [25]. Two GNNs
for weather forecasting were recently shown to achieve promising results in [49] and [50].

In this paper, we apply GNNs for flood prediction. Preliminary results for this paper were presented in
[51], where we introduced FloodGNN. Here, we extend FloodGNN to account for spatially distributed
rainfall data and provide additional experiments validating our approach. A GNN for flood prediction
was also proposed in [52]. However, notice that the previous work does not account for rainfall data and
is evaluated using completely synthetic datasets. Moreover, our method represents water velocity in its
physical form as a vector feature, instead of scalars. Our experiments apply data from a more realistic
simulation of Hurricane Harvey in Houston, Texas, generated using LISFLOOD-FP.
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3. Flood prediction problem

We will first formalize the problem investigated in this work. Without loss of generality, we will assume
that the locations are organized as graphs; for instance, a mesh grid where cells are considered as
nodes and edges connect adjacent cells. The goal is to predict water depths 𝑤𝑡+1

𝑖
and in/out-velocity

vectors a𝑡+1
𝑖

(b𝑡+1
𝑖

) (see Figure 1) on each node 𝑖 based on attributes capturing the topography of
the locations, rainfall predictions, and past values of water depth 𝑤𝑡−𝑘

𝑖
. . . , 𝑤𝑡−1

𝑖
, 𝑤𝑡

𝑖
and velocity

(a𝑡−𝑘
𝑖

, b𝑡−𝑘
𝑖

), . . . , (a𝑡−1
𝑖

, b𝑡−1
𝑖

), (a𝑡
𝑖
, b𝑡

𝑖
). We consider the ground elevation 𝑒𝑖 , the Manning friction coef-

ficient 𝑛𝑖 , and the distance to the closest river 𝑑𝑖 as static topographic attributes (see Figure 2). Moreover,
rainfall predictions 𝑝𝑡

𝑖
, which will impact predicted depths and velocities, are given for each location.

We note that our model is general enough to account for other static features, including those derived
from the set we have considered (e.g., slope and aspect). We do not consider features with spatial infor-
mation such as the absolute location of nodes, which can violate the rotation-invariance property of the
graph representation. Our goal is to provide a compact set of features to the model and allow it to learn
more complex (composite) features directly from data.
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(a) General in-/out- velocity depiction.
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(b) In-/out-velocity on a staggered grid.

Figure 1: (1a) On a general graph, each node/cell 𝑖 has an inflow with an in-velocity a𝑖 and outflow
with an out-velocity b𝑖 . We note that water can enter and exit the cell in any direction and a𝑖 and b𝑖 will
differ depending on the properties of node 𝑖 (e.g., friction and elevation). (1b) the same vectors can be
represented on a staggered grid using (left and top) cell interfaces as a basis for in-velocity a𝑖 and (right
and bottom) cell interfaces as a basis for out-velocity. This convention is applied by LISFLOOD-FP [53].
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Figure 2: Spatial distribution of static features in our dataset.
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4. Problem formulation and approach

FloodGNN-GRU is a spatio-temporal model that combines a graph neural network (GNN), named
FloodGNN, and a gated recurrent unit (GRU) network [54]. Its predictions are based on 𝐷-dimensional
dynamic. vector representations 𝐻𝑡+1 ∈ R𝑛×𝐷 as 𝐻𝑡+1 = FloodGNN-GRU(𝐻𝑡 , 𝑋 𝑡 , 𝐺), where 𝑛 is the
number of nodes, 𝐻𝑡 ∈ R𝑛×𝐷 are latent representations, used as hidden states in the GRU module (at
time 𝑡), 𝑋 𝑡 combines node scalar and vector attributes at time 𝑡, 𝐺 is the graph topology (i.e. set of
nodes and edges), and 𝐷 is a hyperparameter.

4.1. Formulation

We represent the flood dynamics within a grid with states 𝑅1
𝑔, . . . 𝑅

𝑇
𝑔 , where the topology remains

constant by the node features change over time. At time 𝑡, the system is in state 𝑅𝑡
𝑔 where the nodes

(i.e., grid cells) 𝑣𝑖 ∈ 𝑉 are associated with vector features V𝑡
𝑖

and scalar features s𝑖 . As vector features,
we consider V𝑡

𝑖
=

[
a𝑡
𝑖
/∥a𝑡

𝑖
∥, b𝑡

𝑖
/∥b𝑡

𝑖
∥
]𝑇 ∈ R2×2, which are in- and out- velocities (See Figure 1). As

scalar features, we consider s𝑡
𝑖
= (𝑒𝑖 , 𝑛𝑖 , 𝑑𝑖 , ∥a𝑡𝑖 ∥, ∥b𝑡

𝑖
∥, 𝑤𝑡

𝑖
)𝑇 ∈ R6 (see problem definition in Section 3).

Our goal is, given the current state 𝑅𝑡
𝑔 of 𝑅𝑔, to predict the depth 𝑤𝑡+1

𝑖
and velocity V𝑡+1

𝑖
for each node

𝑣𝑖 ∈ 𝑉 at time step 𝑡+1.
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Figure 3: Overview of FloodGNN-GRU. At each time 𝑡, the region 𝑅𝑔 is in state 𝑅𝑡
𝑔 with scalar

features s𝑡
𝑖

and vector features V𝑡
𝑖

for each node/cell 𝑣𝑖 . These are processed through a FloodGNN-GRU
to produce hidden state 𝐻𝑡 that captures both spatial and temporal information on the dynamics of a
flooding event. 𝐻𝑡 is later used for the estimation of the next water depth �̃�𝑡+1

𝑖
and velocities ã𝑡+1

𝑖
and

b̃𝑡+1
𝑖

. The L1 loss function between �̃�𝑡+1
𝑖

, ã𝑡+1
𝑖

, b̃𝑡+1
𝑖

and their ground truth values 𝑤𝑡+1
𝑖

, a𝑡+1
𝑖

, b𝑡+1
𝑖

is used
for parameter learning in our model.

4.2. Method

In FloodGNN-GRU, a graph neural network (FloodGNN) captures the spatial behavior of a flooding
event as it spreads over a region. This is performed using the message-passing mechanism proposed in
[41]. The temporal evolution of the flood is captured by a gated recurrent unit (GRU), which is a type
of Recurrent Neural Network [55, 56]. These two components of our proposed method are introduced
in the three sections following sections.
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4.2.1. Spatial information with FloodGNN
FloodGNN represents a given area as a graph by sampling nodes over the space. Topographic and rainfall
data from the corresponding area are assigned to each node, and nodes are connected based on spatial
adjacency. As velocities are vectors, we would like to preserve their geometry and not treat them as
scalar features. Thus, we apply geometric vector perceptrons (GVP) [26] for feature transformation with
attention mechanism during message passing as proposed by [57]. GVPs are an extension of standard
dense layers (MLPs) that consider two types of features, scalar features (s ∈ R𝐶 ) and vector features
(V ∈ R𝐷×2). The former is the concatenation of features that by nature are 𝑐 scalars (e.g., ground
elevation) and the latter is a collection of 𝑑 features that have some physical/geometric properties and
are therefore represented as vectors (e.g., velocity in 2D). GVP takes a tuple of scalar features and vector
features (s,V) to produce a new tuple of scalar and vector features (s′ ∈ R𝑀 ,V′ ∈ R𝑁×2).

Thus, (s′,V′) = GVP(s,V), slightly modified from [26], is defined as follows:

V(ℎ) = WℎV ∈ R𝐹×2

V′ = WV(ℎ) ∈ R𝑁×2

r = ∥V(ℎ) ∥2 ∈ R𝐹 (row-wise L2-norm)

q = [r ∥ s] ∈ R𝐹+𝐶 (concatenation)
s′ = W𝑠q + b ∈ R𝑀

where Wℎ ∈ R𝐹×𝐷 , W ∈ R𝑁×𝐹 , W𝑠 ∈ R𝑀×(𝐹+𝐶 ) , and b ∈ R𝑀 are learnable weights. Vector operations
(multiplication by a weight matrix) preserve equivariance to vector operations (combinations of rotations
and reflections) while the scalar operations are more expressive (vector norms are treated as scalars).

FloodGNN is therefore similar to traditional GNNs but replaces their simple multiplication by
weight matrices (in message passing and update operations) with GVP operations Given a node 𝑣𝑖 with
immediate neighborhood N(𝑣𝑖) = {𝑣𝑖} ∪ {𝑣 𝑗 : there is an edge 𝑣 𝑗 → 𝑣𝑖}, the node update operation is
performed as follows

(p 𝑗 ,P 𝑗 ) = GVP(s 𝑗 ,V 𝑗 ) ∀𝑣 𝑗 ∈ N (𝑣𝑖)

s′𝑖 =
∑︁

𝑗 |𝑣 𝑗 ∈N(𝑣𝑖 )
𝛼 𝑗p 𝑗 , V′

𝑖 =
∑︁

𝑗 |𝑣 𝑗 ∈N(𝑣𝑖 )
𝛽 𝑗P 𝑗

The scalars 𝛼 𝑗 and 𝛽 𝑗 are attention weights assigned to 𝑣 𝑗 when passing message to 𝑣𝑖 [58]:

𝛼 𝑗 =
exp(⟨p𝑖 , p 𝑗⟩)∑

𝑘 |𝑣𝑘 ∈N(𝑣𝑖 )
exp(⟨p𝑖 , p𝑘⟩)

, 𝛽 𝑗 =
exp(tr(P𝑇

𝑖
P 𝑗 ))∑

𝑘 |𝑣𝑘 ∈N(𝑣𝑖 )
exp(tr(P𝑇

𝑖
P𝑘))

where ⟨·⟩ is the inner product between two vectors and 𝑡𝑟 (·) is the trace of a matrix:
During training, FloodGNN. learns to generate representations (s′,V′) that capture the state of the

flooding event (i.e. water depths and velocity vectors). In the next section, we describe how a GRU can
be combined with FloodGNN to enable it to capture the dynamics of the flooding event.

4.2.2. Spatio-temporal information with GRU and FloodGNN
FloodGNN-GRU applies a GRU model to capture the temporal information from the flooding event. The
MLP module from the (traditional) GRU is replaced with FloodGNN layers to leverage the temporal
and spatial spread of a flood. Our approach follows a similar strategy to the ConvLSTM architecture
[59] to combine spatial and temporal information, but FloodGNN plays the role of the Convolutional
Neural Network. This enables our approach to process a sequence of relevant node inputs (topographic
attributes, rainfall, previous water depths, etc.) to predict the next state of the flooding event (water
depths and velocity vectors).
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The GRU is designed as follows:

𝑧𝑡 = sigmoid
(
𝑓𝑧 (𝑅𝑡

𝑔) + 𝑔𝑧 (𝐻𝑡−1)
)

(4.1)

𝑟 𝑡 = sigmoid
(
𝑓𝑟 (𝑅𝑡

𝑔) + 𝑔𝑟 (𝐻𝑡−1)
)

(4.2)

�̂�𝑡 = tanh
(
𝑓ℎ (𝑅𝑡

𝑔) + 𝑔ℎ (𝑟𝑡 ⊙ 𝐻𝑡−1)
)

(4.3)

𝐻𝑡 = 𝑧𝑡 ⊙ 𝐻𝑡−1 + (1 − 𝑧𝑡 ) ⊙ �̂�𝑡 (4.4)

where 𝑓{𝑧,𝑟 ,ℎ} and 𝑔{𝑧,𝑟 ,ℎ} are FloodGNN layers (see Section 4.2.1) and sigmoid and tanh are non-linear
activation functions. 𝑅𝑡

𝑔 is the state of the graph at time t, that is, the set of tuples of scalar features and
vector features of all the nodes in the graph at time step 𝑡. 𝐻𝑡−1 is the set of tuples of scalar hidden states
and vector hidden states from the previous time step 𝑡 − 1. Note that all these operations have inputs
and output sets as tuples (of scalar and vector features). That is, 𝑧𝑡 , 𝑟 𝑡 , �̂�𝑡 , and 𝐻𝑡 are all tuples We
use ⊙ as the element-wise product between vectors or matrices. Here again, since we are dealing with
tuples, ⊙ is applied individually/separately to scalar and vector parts of 𝑟 𝑡 , 𝐻𝑡−1, and 𝑧𝑡 . Furthermore,
all operations, including activation functions and arithmetic operations, are applied individually to the
entries of these tuples

4.2.3. Prediction
The values of the water depth 𝑡 + 1 (�̃�𝑡+1

𝑖
), and associated velocities (ã𝑡+1

𝑖
, and b̃𝑡+1

𝑖
) at the next time step

are predicted based on node representations as follows:

(𝑠,V) = 𝑓𝑝 (𝐻𝑡 ), 𝑠 ∈ R V ∈ R2×2

�̃�𝑡+1
𝑖 = 𝑠2, ã𝑡+1

𝑖 = V[1,:] , b̃𝑡+1
𝑖 = V[2,:]

where 𝑓𝑝 is a GVP layer, 𝐻𝑡 is defined in Equation 4.4, ã𝑡+1
𝑖

and b̃𝑡+1
𝑖

are the first row (V[1,:]) and second
row (V[2,:]) of P, respectively. We take the square of 𝑠 to obtain �̃�𝑡+1

𝑖
to enforce water depths to always

be non-negative.
The values �̃�𝑡+1

𝑖
, ã𝑡+1

𝑖
and b̃𝑡+1

𝑖
are used to construct input features s𝑡+1

𝑖
and V𝑡+1

𝑖
, which are used

together with 𝐻𝑡 at the next time-step (𝑡 + 2). The L1 loss, which performed better than L2 loss (see
Figure 10), is used to compare predictions �̃�𝑡+1

𝑖
, ã𝑡+1

𝑖
, b𝑡+1

𝑖
and their respective ground truth values 𝑤𝑡+1

𝑖
,

a𝑡+1
𝑖

, b𝑡+1
𝑖

to update the model parameters. By minimizing the loss for a training set, we optimize both
the FloodGNN and GRU parameters in an end-to-end fashion. Once the model is trained, predictions
can be made efficiently based on forward operations.

The overall architecture of FloodGNN-GRU is shown in Figure 3. FloodGNN-GRU can predict the
dynamics of flooding events based on both topographic attributes and rainfall forecasts. In particular,
the recursive nature of our model, inherited from the GRU architecture, enables it to make predictions
with long-term lead times—i.e. number of time steps in the future. In the next section, we will evaluate
our model using a representative dataset from Hurricane Harvey, in Houston, TX.

5. Experiments

This section provides an empirical evaluation of FloodGNN-GRU, which is our data-driven approach for
flood prediction that combines a GNN and a GRU architecture. The goal of our evaluation is to address
the following questions: (1) how accurate is FloodGNN-GRU at predicting water depths for various lead
times compared to alternative data-driven approaches and (2) how efficiently can FloodGNN-GRU be
trained and tested compared to a traditional physics-based inundation model?
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5.1. Dataset

Our experiments are based on simulations from the grid-based flood inundation model LISFLOOD-FP
(version 8) [4]. The model domain was designated using a modified shapefile of the Harris County Flood
Control District’s (HCFCD) watershed boundaries as a mask. Elevation data were interpolated onto the
model grid using a 10-m digital elevation model (DEM) collected from the U.S. Geological Survey’s
(USGS) 3D Elevation Program (3DEP) National Elevation Dataset (NED). River bathymetry data (i.e.,
bed elevation, bank elevation, channel width) were extracted from HEC-RAS models maintained by
HCFCD and available via the Model and Map Management (M3) System and used to create the sub-grid
channels (SGC) embedded within the model domain. Overland roughness coefficients were assigned
to each grid cell based on the land use/land cover (LULC) classes in the 2016 Multi-Resolution Land
Characteristics (MLRC) Consortium’s National Land Cover Database (NLCD), which classifies 16 land
cover types at a 30-m resolution for the CONUS. Manning’s friction coefficients were obtained for each
LULC class from Kalyanapu et al. (2009). Infiltration was assumed to be spatially uniform across the
model domain (1.5E-6 ms−1). The final 30-m resolution model contains 3,208,196 (1961 × 1636) active
grid cells and encompasses a large portion of Harris County and the City of Houston (Figure 4a).

To validate the LISFLOOD-FP model performance, we hindcast Hurricane Harvey for 6 days
beginning on August 25, 2017 00:00 UTC. Runoff processes were simulated by forcing the model
with observed precipitation and streamflow. Hourly NOAA NEXRAD radar precipitation records were
obtained from the Multi-Radar Multi-Sensor Gauge Corrected (MRMS-GC) Quantitative Precipitation
Estimation (QPE) product [60]1. Upstream boundary conditions were included at the outlets of Addicks
and Barker reservoirs using reported hydrographs at USGS streamflow gages 08072600 and 08073100
and at the eastern boundary of the model domain using observed water level records at the NOAA
tide gage located at Manchester (Station ID: 8770777). The simulation was run using an adaptive time
stepping algorithm based on the convergence condition by Courant–Friedrichs–Lewy to ensure stability
and convergence and gridded water levels were saved every 3600 seconds during the simulation. We
compare modeled and observed water levels at 73 USGS high water marks (HWMs) and calculate a
root-mean-square-error (RMSE) of 1.07, bias (also known as mean error) of 0.82, and R2 of 0.98.

Using the validated model, we obtained hourly water depths and velocity vectors (i.e., time series
with a time-step of 1 hour). The model domain was divided into smaller non-overlapping sub-regions of
sizes≈ 50×32 to generate enough sample regions for training (illustrated in Figure 4b) the baselines and
our proposed model. The models are trained and tested on different sub-regions to simulate the setting
where our model is applied as an alternative LISFLOOD-FP. The simulation outputs from LISFLOOD-
FP are, thus, considered as ground truth or true water depths/velocities for training as well as testing in
our work. We obtained the graph representations of these regions by considering a grid cell as a node
that is linked to its surrounding cells. There were 1531 grid-based (non-overlapping) sub-regions from
which we randomly selected 70% for training, 15% for validation, and 15% for testing. We randomly
split the data to avoid having in one split, say, training split, regions with one predominantly common
feature (for instance, all flat areas); we further consider 3 random independent splits, resulting in 3
experiment results (See Section 5.3).

The generated flood inundation data is heavily left-skewed, i.e., a majority of water depths are
zero. This causes some challenges to the training process of a machine learning model such as back-
propagation of gradient zero. Therefore, to remove the excessive number of (leading) zeroes from the
data, for each sample sub-region, we start counting the first time step where there is at least one grid cell
with a non-zero water depth value. Table 1 shows features used in our experiments and the normalization
employed for each one of them. In most cases, feature values are scaled down by their order of magnitude.
For instance, rainfall values can be of 2 orders of magnitude; thus, they are multiplied by 1e-2.

1https://github.com/dossgollin-lab/climate-data/

https://github.com/dossgollin-lab/climate-data/
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(a) (b)

Figure 4: (4a) Digital elevation model (DEM) of Houston, Texas. (4b) Generation of non-overlapping
sub-regions and illustrative example of the split of these sub-regions into training and test sets

Table 1: Input features. Pre-processing means that the data were calculated from other features.

Feature Source Normalization

Digital Elevation Model (𝑒𝑖) U.S. Geological Survey scaled by 1e-2
Distance to closest stream (𝑑𝑖) Pre-processing scaled by 1e-5
Manning’s coefficient of friction (𝑛𝑖) Kalyanapu et al. [61] None
In-velocity (a𝑖) LISFLOOD-FP unit vector
Out-velocity (b𝑖) LISFLOOD-FP unit vector
In-velocity magnitude (∥a𝑖 ∥) Pre-processing scaled by 1e-2
Out-velocity magnitude (∥b𝑖 ∥) Pre-processing scaled by 1e-2
Rainfall (𝑝𝑖) NOAA NEXRAD scaled by 1e-2
Water depth (𝑤𝑖) LISFLOOD-FP scaled by 1e-1

5.2. Evaluation metrics

We used metrics commonly employed in regression tasks for the evaluation of and comparison between
the performances of our proposed method and baselines. In the notation used below, 𝑦𝑖 is the true water
depth of a cell, 𝑝𝑖 is the predicted water depth of the cell, �̄�𝑖 is the mean of water depth over all the cells,
and 𝑁 is the total number of all the cells (from all the sub-regions combined). While comparing the
methods based on a single evaluation metric might not be sufficient, this comprehensive set of metrics,
in combination, provides a clear picture of their performance.

• Root mean square error:

RMSE =

√︂
1
𝑁
∥𝑦𝑖 − 𝑝𝑖 ∥2

2

• Nash–Sutcliffe model efficiency coefficient:

NSE = 1 −
∑𝑁

𝑖 ∥𝑦𝑖 − 𝑝𝑖 ∥2
2∑𝑁

𝑖 ∥𝑦𝑖 − �̄�𝑖 ∥2
2
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• Pearson correlation coefficient:

𝑟 =

∑𝑁
𝑖 (𝑦𝑖 − �̄�𝑖) (𝑝𝑖 − 𝑝𝑖)√︃∑𝑁

𝑖 (𝑦𝑖 − �̄�𝑖)2
√︃∑𝑁

𝑖 (𝑝𝑖 − 𝑝𝑖)2

• Symmetric mean absolute percentage error. This is an alternative to MAPE (mean absolute
percentage error) which tends to blow up to infinity when the true data has zero values:

sMAPE =
1
𝑁

𝑁∑︁
𝑖

|𝑦𝑖 − 𝑝𝑖 |
|𝑦𝑖 | + |𝑝𝑖 |

• Critical Success Index

CSI =
TP

TP + FP + FN

where TP are true positives (cells with both the predictions and ground truths greater than 𝛾), FP are
false positives (cells whose ground truths are less than 𝛾 but the model’s predictions are greater than
𝛾), and FN are false negatives (cells where the model fail to predict a flooded area). In our
experiments, we consider 𝛾 = 0.001 m which is the lowest positive value possible.

5.3. Results

We compare our method against the following baseline methods.

• GCN-GRU: This model is similar to FloodGNN-GRU, but we simply use a graph convolution
network (GCN) [36] that processes velocities and scalar features by concatenating them with other
features. This method will also serve as part of our ablation analysis evaluating the impact of vector
feature representations.

• MLP-GRU: This model is also similar to FloogGNN-GRU, but we use a one-layer multi-layer
perceptron (MLP) instead of a GNN layer. As a consequence, this model does not consider the
spatial model.

• Unet : This model is based on the U-Net architecture proposed in [62]. To explicitly account for the
temporal behavior of a system.

These baselines are representative methods from the literature on machine learning for flood
prediction, which include CNN-based methods [16, 19, 18] and RNN-based methods [63, 64].

FloodGNN-GRU was trained using the Adam optimizer [65] with weight decay and learning rate
set to 1e-3. The model was trained for 1,000 epochs during which we kept the best-performing state
(weights) of our model based on the lowest RMSE score on the validation set. We performed three
independent experiments based on three random splits of the data (as described in Section 5.1). For a
fair comparison, the baseline methods were trained and tested on the same data splits as our method.

Table 2 shows the means and standard deviations (over 3 independent experiments) of the metric
scores for predictions with lead times of 1, 5, and 10 hours. All the methods were trained and validated
(using the validation set) for a total of 8 time steps, but the inference is not restricted to a fixed number
of time steps. We found that training on fewer time steps than 8 did not perform well at inference time,
and we did not notice much improvement when training using a number of time steps greater than 8.
The results show that FloodGNN-GRU achieves the best results across different metrics. Based on the
results at time 𝑡 = 10, there is a gain of about 17% in terms of RMSE, and 15% in terms of sMAPE,
showing that FloodGNN-GRU’s prediction of water depth values are the closest to the true water depths.
We can also notice that FloodGNN-GRU has a very high NSE score (about 77% increase), proving that
FloodGNN-GRU isn’t just predicting the trivial mean value of water depth values. The 31% increase in
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Pearson’s coefficient of correlation score indicates that FloodGNN-GRU’s predictions follow the trend
of the ground truth better than competing baselines.

Table 2: Predictions time-step of size 1-hour. For each metric, the mean and standard deviation over 3
random, independent experiments are provided. RMSE is in meters; while the rest of the metrics are
unitless. ↓ means lower is better, and ↑ means higher is better.

time-step 𝑡 RMSE ↓ NSE ↑ 𝑟 ↑ sMAPE ↓ CSI ↑
Prediction at 1-hour lead-time

GCN-GRU .0079 ± .00 .0171 ± .40 .6618 ± .06 .2069 ± .03 .4316 ± .20
MLP-GRU .0074 ± .00 .1767 ± .15 .6007 ± .06 .2416 ± .02 .7109 ± .02
Unet .0071 ± .00 .2427 ± .11 .5902 ± .05 .2374 ± .04 .6630 ± .03
FloodGNN-GRU .0040 ± .00 .7651 ± .02 .8840 ± .01 .1535 ± .01 .8088 ± .02

Prediction at 5-hour lead-time
GCN-GRU .0215 ± .00 .1911 ± .05 .4853 ± .04 .2677 ± .03 .6607 ± .02
MLP-GRU .0219 ± .00 .1592 ± .01 .4422 ± .01 .2631 ± 0.02 .6589 ± .02
Unet .0218 ± .00 .1698 ± .03 .4427 ± .05 .2729 ± .02 .5949 ± .05
FloodGNN-GRU .0174 ± .00 .4724 ± .01 .6978 ± .01 .2082 ± .00 .7465 ± .01

Prediction at 10-hour lead-time
GCN-GRU .0355 ± .00 .0884 ± .02 .4331 ± .04 .3034 ± .02 .6391 ± .01
MLP-GRU .0355 ± .00 .0875 ± .02 .3819 ± .01 .2935 ± .01 .6180 ± .03
Unet .0357 ± .00 .0774 ± .02 .3987 ± .04 .3107 ± .02 .5805 ± .04
FloodGNN-GRU .0293 ± .00 .3790 ± .02 .6301 ± .01 .2492 ± .00 .6970 ± .03

The results of the velocity predictions are shown in Table 3. Here again, we can see that FloodGNN-
GRU performs the best, with an RMSE of one order of magnitude less than the second-best approach.
This can be attributed to the fact FloodGNN-GRU treats velocities as physical entities by representing
them as vector features instead of scalar features.

Table 3: RSME on the velocity predictions in terms of mean and standard deviation values over 3
random, independent experiments.

time GCN-GRU MLP-GRU Unet FloodGNN-GRU
𝑡 = 1 .01281 ± .003 .00713 ± .000 .01539 ± .002 .00087 ± .000
𝑡 = 5 .01407 ± .002 .00607 ± .000 .02505 ± .007 .00085 ± .000
𝑡 = 10 .01523 ± .003 .00601 ± .000 .02552 ± .007 .00071 ± .000

Figure 5 shows the performances of all the methods over longer lead times (from 𝑡 = 1 to 𝑡 = 20). As
expected, the error of the predictions for all methods increases significantly with the lead time. This is
due to the accumulation of prediction errors by the recursive model over time. Still, we can observe that
FloodGNN-GRU achieves the best results among the approaches considered. As a future work, we will
investigate how to incorporate some of the physics of flooding—i.e. the fluid mechanics equations—into
our model as a means to improve its long-term accuracy.

Figures 6, 7, and 8 provide visualizations of the correlation between true and predicted values—
with respective Pearson’s correlation coefficient—at time 𝑡 = 1, 𝑡 = 5, and 𝑡 = 10, respectively, for
FloodGNN-GRU and the baselines. The results confirm that FloodGNN-GRU produces the predictions
that are the most aligned with the ground truth. However, as noticed earlier, the degradation of the
performance is noticeable as the lead time increases. These results also illustrate how all the ML models



12 Kazadi et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
time step t

0.01

0.02

0.03

0.04

0.05

0.06

0.07

RM
SE

GCN-GRU
MLP-GRU

Unet
FloodGNN-GRU

(a) RMSE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
time step t

0.4

0.2

0.0

0.2

0.4

0.6

0.8

NS
E

GCN-GRU
MLP-GRU

Unet
FloodGNN-GRU

(b) NSE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
time step t

0.3

0.4

0.5

0.6

0.7

0.8

0.9

pe
ar

so
n 

r2  

GCN-GRU
MLP-GRU

Unet
FloodGNN-GRU

(c) Pearson 𝑟

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
time step t

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

sM
AP

E 

GCN-GRU
MLP-GRU

Unet
FloodGNN-GRU

(d) sMAPE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
time step t

0.3

0.4

0.5

0.6

0.7

0.8

CS
I 

GCN-GRU
MLP-GRU

Unet
FloodGNN-GRU

(e) CSI @ 0.001

Figure 5: Predictions from time 𝑡 = 1 to 𝑡 = 20 (in hours) with 1-hour time intervals. Each solid line
represents the mean over three experiments, and the shadows along the solid lines represent standard
deviations. The results show that FloodGNN-GRU achieves the best results compared to other methods.

tend to underestimate larger values of water depth. This is an indication that ML models for flood
prediction still need to be improved for extreme events.

To further assess the accuracy of FloodGNN-GRU, Figure 9 shows visualizations of the true water
depth and water depth values predicted by our model over a sub-region sampled from the test dataset for
lead times 𝑡 = 5, 𝑡 = 10, and 𝑡 = 20. We can see that FloodGNN-GRU follows the trend of the flooding
event represented by the true water depth. However, some of the water depths are underestimated by our
model. In other words, FloodGNN-GRU is better at localizing the flood than at predicting its intensity.

Runtime results: One of the motivations for ML-based flood prediction models is their efficient com-
putation compared to traditional physics-based inundation models. Therefore, we compare the running
time of LISFLOOD-FP against the training and test time of FloodGNN-GRU. All the experiments were
run on a Linux machine with an Intel(R) Xeon(R) Gold 6342 CPU @ 2.80GHz, 256 GB of RAM, and
an NVIDIA GPU Ampere A40. Notice that LISFLOOD was run on the CPU of the same machine. The
results are shown in Table 4. FloodGNN-GRU can be trained in 4 min 17 sec per epoch (roughly 1 hour
and a half for 1000 epochs) and tested in 30 seconds, which is 1000x faster than the time necessary to
run the LISFLOOD-FP simulation. Note that simulations are still needed for training FloodGNN-GRU
but are not included in the training time. The most relevant runtime result is for testing, which shows that
once trained, FloodGNN-GRU is an efficient alternative to running new LISFLOOD-FP simulations.
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Figure 6: Scatter plot of water depths in log-log scale at time 𝑡 = 1. FloodGNN-GRU produces
predictions that are the most aligned with true values. Pearson’s coefficient of correlation values are
given at the bottom of each plot.

Table 4: Computation times.

LISFLOOD-FP FloodGNN-GRU Training FloodGNN-GRU Testing
Time (in sec.) 40,780 4,285 30

Ablation analysis. Figure 10 shows the performance of FloodGNN-GRU when: (i) we consider 2
FloodGNN layers instead of 1 and (ii) and when we train it with the 𝐿2 loss instead of 𝐿1. We can
see that a single FloodGNN layer performs better than two layers; thus, adding more layers can hurt
performance. Furthermore, 𝐿1 allows better learning than 𝐿2 with a significant boost in performance.
Figure 11 shows the results when the GRU module is removed from FloodGNN-GRU, we can notice
that without the GRU module, the training is not stable and the performance is worsened.
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Figure 7: Scatter plot of water depths in log-log scale at time 𝑡 = 5. FloodGNN-GRU produces
predictions that are the most aligned with true values. Pearson’s coefficient of correlation values are
given at the bottom of each plot.

6. Conclusion and Future Work

We have presented FloodGNN-GRU, a graph neural network for flood prediction that captures the
dynamics of the flooding event using a GRU architecture. FloodGNN-GRU takes as input a spatially
distributed rainfall event, static (e.g. ground elevation, friction), and dynamic (e.g. current water depth
and velocity vectors) inputs over a region to predict the next water depth and associated velocities. We
propose representing velocities as vector features to preserve their physical properties.

Our experiments were based on a realistic LISFLOOD-FP simulation of Hurricane Harvey in Hous-
ton, TX. Results have shown that FloodGNN-GRU outperforms three alternative approaches in terms
of different evaluation metrics (RMSE, NSE, 𝑟 , and sMAP) and for various prediction lead times (from
1-20 hours). Moreover, the training and testing of FloodGNN-GRU require significantly less time than
required for running LISFLOOD-FP simulations, about 1000x faster. These results are strong evi-
dence of the potential of data-driven methods to efficiently emulate physics-based inundation models,
especially for short-term predictions.

Our work opens several venues for future research. We will investigate how physics can be incorpo-
rated into our model—based on the 2-D shallow water equations [1]. We will also leverage watershed
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Figure 8: Scatter plot of water depths in log-log scale at time 𝑡 = 10. FloodGNN-GRU produces
predictions that are the most aligned with true values. Pearson’s coefficient of correlation values are
given at the bottom of each plot.

information to better partition regions for training/testing. Finally, our experiments applied a fixed grid
(mesh) topology. We will develop adaptive re-meshing schemes able to select the optimal number of
nodes/cells for different areas (e.g. urban vs. rural).
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Figure 9: True water depth in meters (Column 1) compared to FloodGNN-GRU predictions (Column
2), and the water depth difference map (Column 3). Our approach can localize the flood (i.e., locations
with larger water depths), but the extent of the flood is often underestimated, which is consistent with
the results from Figures 6-8. Note that the color scales are different for each time to better appreciate
the difference between the target and prediction values at the different water depth levels.
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Figure 10: Performance when FloodGNN-GRU is trained with 2 FloodGNN layers instead of 1, and
when it is trained with 𝐿2 loss instead of 𝐿1.
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Figure 11: Performance when the GRU module of FloodGNN-GRU is removed.
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